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ABSTRACT 

This study introduces an innovative method that employs evolutionary computation to 

address interval-valued fractional bilevel programming (IVFBLP) problems. These involve 

decision-making at two hierarchical levels, where some data is expressed as intervals rather 

than fixed values, enhancing realism but increasing complexity. The proposed method 

integrates mixed 0–1 programming, goal programming, and genetic algorithms to efficiently 

address these challenges. 

The genetic algorithm mimics natural evolutionary processes by generating multiple solution 

candidates and iteratively selecting the best, allowing the model to explore a wide solution 

space and converge towards optimal or near-optimal decisions. To ensure solutions closely 

meet desired goals while minimizing adverse outcomes, termed regrets, the approach 

employs two strategies—minsum and minmax—within a combined success-measuring 

function. 

The solution process follows two phases: first, it establishes optimal target intervals 

representing achievable goal ranges; second, it identifies the best decisions for both leader 

(upper) and follower (lower) roles. This structured approach delineates responsibilities 

between decision-makers. 

Utilizing evolutionary computing enables the model to handle uncertainties, nonlinearities, 

and complex structures effectively. The paper demonstrates practical applicability through a 

numerical example, showcasing its capability to solve real-world problems involving 

interval-based objectives and constraints where decisions occur at multiple hierarchical 

levels. 

Keywords : Fractional bilevel programming, Goal programming, Evolutionary algorithm, 

Interval programming, Interval-valued fractional bilevel programming, Multiobjective 

decision-making.  

1. INTRODUCTION 

Bilevel programming (BLP) has been extensively studied as a mathematical framework for  

modelling decision problems with a hierarchical structure, particularly since the pioneering 

work of Candler and Townsley [4], who demonstrated its applicability in large-scale 

organizational planning and decision-making structures. A typical bilevel programming 

problem (BLPP) involves a pair of decision makers (DMs) operating at separate hierarchical 

stages—each directing their own decision variables and independently pursuing their 

respective objectives. However, in practical scenarios, it has become evident that mutual 

cooperation and willingness to compromise are essential for maintaining the organization‘s 

existence and fostering sustainable progress. This realization has led to a growing interest in 

cooperative decision-making models that balance individual and collective interests. 

In this context, both BLPPs and their generalizations—multilevel programming problems 

(MLPPs)—have been investigated in depth [2,3,5,8, 22]. Additionally, fuzzy programming 
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(FP) methods [7. 19] have been introduced as a means of dealing with uncertainty in 

decentralized decision-making. These methods have been successfully employed in real-

world contexts, including traffic regulation, economic system planning, strategic defense, 

network design, and conflict management. 

Research demonstrates that genetic algorithms (GAs), which serve as powerful methods for 

MODM problems [15, 16], have been adapted for BLPPs [12,18]. Additionally, the GA-

based fuzzy goal programming (FGP) frameworks proposed by Pal et al. [29,30] for linear 

and fractional BLPPs and MLPPs indicate progress, though this field is still emerging. 

Despite the success of FP and FGP approaches in MODM applications, one recurring 

challenge persists: assigning fuzzy aspiration levels to objectives, particularly when the 

underlying data or targets are ambiguous or ill-defined. This issue often arises in real-world 

decision-making environments characterized by uncertainty and imprecision. 

To address this difficulty, interval programming (IP) has emerged as a valuable alternative. 

IP methods handle uncertainty by representing parameters as intervals rather than exact or 

fuzzy values. The methodological foundations of IP have been extensively studied by Olivera 

et al. [25] and further explored by Pal et al. [26,27]. A GA analyzed method to fractional IP 

problems has been proposed in [26], and its practical applicability has been demonstrated in 

[31]. However, the methodological development of IP remains at a nascent stage, and its 

integration with hierarchical decision-making models is still relatively unexplored in 

scholarly work. 

Here, we examine a fractional bilevel programming problem characterized by interval-valued 

objective coefficients at both decision levels. Within a goal programming (GP) framework, 

we first determine target intervals and the control vector for the upper-level decision maker 

(leader) which is derived by evaluating the best and worst objective outcomes for both the 

leader and the lower-level decision maker (follower), implementing a GA framework 

The objectives and control vector expressed as intervals are later reformulated into standard 

goals through interval arithmetic techniques. A goal achievement function is constructed to 

minimize both underachievement and overachievement variables related to the targeted goals, 

utilizing both minsum [11] and minmax [1] strategies. By focusing on reducing the lower 

thresholds of regret intervals corresponding to the intervals of goal, this method aims to 

derive a compromise solution that reconciles the interests of both DMs and contributes to the 

collective advantage of the organization. 

To tackle the combinatorial complexity of the model, it is reformulated as a mixed 0–1 goal 

programming problem. A GA employed search approach is then employed to identify a 

satisfactory decision based on the relative importance assigned to goal achievements. 

The suggested method is demonstrated through a mathematical example to demonstrate its 

practical utility and effectiveness. 

2. Related Problem Formulation 

Let‘s consider a vector X=(x1,x2,…,xn) that contains all the decision variables for the two-

level (hierarchical) decision-making systems. 

For the k-th objective, Fk represents the objective function (what we want to achieve), 

and Xk represents the function that outlines the intended objective k=1,2; where  

.X}2,1kX{ k
k

 . 



National Research Journal of Information Technology & Information Science                                                        ISSN No: 2350-1278  

Volume No: 12, Issue No: 2, Year: 2025 (July- December)                            Peer Reviewed & Refereed Journal (IF: 7.9) 

PP: 75-87                                                Journal Website www.nrjitis.in  

Published By: National Press Associates                                                                                                                                                         Page 77 

© Copyright @ Authors 

In a structured, multi-level decision environment, the fractional bilevel programming problem 

(BLPP) with interval-based coefficients can be written as: 

Find the variables X1 and X2 so that the objectives are achieved. 

],[X]d,d[X]d,d[

],[X]c,c[X]c,c[
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Here, for k=1,2 the given terms are: 

 Interval coefficient vectors ]c,c[ U
k

L
k  , ]d,d[ U

k
L
k  — values defined within a lower limit 

(L) and an upper limit (U), representing uncertain or variable data. 

 Constants U
k

L
k α,α , U

k
L
k β,β — fixed numerical values. 

 Constant matrices 21 AandA — tables of fixed numbers. 

 b — a fixed vector. 

It is also assumed that the collection of all solutions (the feasible region) )Φ(S  constitutes a 

convex and continuous shape, meaning any line between two points in the region stays 

entirely within it. 

It is again generally accepted that 0]β,[β]Xd,[d]Xd,[d U
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Applying the interval arithmetic operation rule from [14], the interval-valued objectives in (1) 

and (2) have the capability to subsequently be represented as [27]: 
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In solving the problem, the GA approach is applied to identify the equations that demonstrate 

the intervals of focus (4) and (5) and to formulate the corresponding GP model. The 

procedure is elaborated in Section 3. 

3. GA algorithm development 

The Genetic Algorithm (GA) framework involves two key operational steps: selection and 

crossover. In the current GA search strategy, the selection mechanism is based on fitter codon 

selection [23], and the crossover mechanism employs a two-point crossover technique [9], as 

described below: 
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(i) Fitter Codon Selection: 

In a GA, chromosomes are typically represented as binary strings, with codons 

being segments of these strings. Traditional GA methods for optimization, such as 

those in [9,13,17], often employ the roulette-wheel selection technique [9] for 

choosing parent chromosomes. In contrast, the fitter codon selection method 

proposed in [23,28] involves comparing codons based on predefined string lengths 

to identify the better candidate. For the GA implementation, selection is 

performed by examining only a segment of the string—from the most significant 

bit to a specified length—without requiring evaluation of the full string or 

conversion to its numeric binary value. This selective focus significantly reduces 

computational overhead during the selection phase. 

(ii) Two-Point Crossover: 

While conventional GA approaches often utilize a single-point crossover strategy 

[13], the current GA model adopts a two-point crossover method as described in 

[9]. The key advantage of this approach is its skill in producing a more diverse 

new population from the initial one within fewer iterations compared to single-

point crossover, thereby enhancing convergence efficiency. 

The detailed algorithmic procedure is provided in Section 3.1. 

3.1 Outline of the Proposed GA Method 

Step 1: Encoding and Initialization 

Let VP signifies the binary-coded version of a chromosome found in a population as                         

VP = { n21 x,...,x,x }P, where ‗n‘ with ‗n‘ indicating the chromosome‘s length, P = 1, 2,..., 

pop_size, represents the population size, and where pop_size chromosomes are randomly 

initialized in its search domain. 

Step 2. Fitness function 

The fitness score for every chromosome is derived from the objective function. The fitness 

function is defined as     

eval (VP) = PK )F( ,      k = 1, 2;  P = 1,2, . . ., pop_size.   

The chromosomes associated with the maximum and minimum values of the objective 

function are identified as 

V* = max {eval (VP) | P = 1, 2,..., pop_size}, 

and V* = min{eval (VP) | P = 1, 2, ..., pop_size}, respectively.  

Step 3. Survivor Determination 

Within the suggested genetic algorithm (GA), a ―fitter codon selection‖ method is used. This 

means chromosomes (possible solutions) are selected from the population based on how good 

(fit or optimal) they are in solving the problem. The advantage of this method is that it helps 

efficiently guide the search process toward a solution with a certain desired fitness level, 

improving convergence speed and solution quality. 

For example, consider these four chromosomes in the population: 

(i) 111010000 

(ii) 111101010 
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(iii) 010111010 

(iv) 101010010 

In this method, codons (bit segments within the chromosome) are compared based on how 

often the most important bits match at the beginning. The ―codon length‖ begins at the most 

significant bit and proceeding up to the first differing bit, capturing early similarity. In the 

example, chromosomes (i) and (ii) have a codon length of 4, making them fitter than (iii) and 

(iv) due to a longer matching prefix. Between (i) and (ii), chromosome (ii) is even fitter than 

(i) because it continues to match key bits further. Importantly, we don‘t need to convert these 

binary strings into decimal numbers for comparison — we decide relative fitness directly 

from structural bit patterns, simplifying the evaluation process. 

Step 4. Crossover 

The chance that crossover will happen when two chromosomes reproduce is given by a 

value called Pc. In a two-point crossover, two parent chromosomes swap the middle part of 

their genes with each other to create new offspring. To pick a chromosome as a parent, two 

random numbers (r and r1), each between 0 and 1, are chosen. Both r, r1  [0, 1] must be less 

than Pc, and when you add them together, they should be less than 1. For choosing two 

parents, a third number r2 is also defined so that such that r2=1-r- r1. 

Step 5. Mutation 

Pm is a value that shows how likely a mutation is to happen. Mutation is done one bit at a 

time, and for each bit, upon selecting a random number in the interval [0, 1], if it is less than  

Pm, that bit in the chromosome will be mutated. 

Step 6. Termination 

The genetic algorithm stops running after it has completed a set number of generations. 

At this point, the best chromosome that has been produced so far is chosen as the solution. 

This top-performing chromosome is considered the result of the search by the algorithm. 

The decision made by the algorithm is based on the quality of this best chromosome. 

In summary, the process ends when the best possible answer is found within the given 

generations. 

4. INTERVAL-BASED REPRESENTATION OF THE OBJECTIVE 

To formulate the GP model specifically for the BLPP, you need to set the target ranges for 

both goals, F1 and F2. You also have to decide on the decision variables, called X1 that the 

leader will manage. These details must be clearly established within the decision-making 

process. This helps guide how the model works and finds solutions. 

4.1. Computing Intervals of Target 

A target range is determined by first identifying the optimal and least favorable outcomes for 

each objective. This is accomplished by configuring the Genetic Algorithm with suitable 

parameters, allowing it to explore possible solutions. The leader's best and worst solutions 

then establish the boundaries for these target intervals. 

Assume the leader‘s highest and lowest solutions for each objective are as follows. 
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Likewise, the optimal and least favorable solutions of the follower can be derived as 
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In the process for arriving into decisions, it is fairly assumed that both the hierarchical levels 

want to work in accordance. Each is ready to give up some of their own advantage to help 

the other. This partnership is regarded as crucial not only for ensuring their survival but also 

for securing the organization's future success. 

From this standpoint, the target intervals corresponding to objective k
F are found as 

     2,1k,t,t U
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L

k   

where ,2,1k,TttT *

kU

U
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k
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kL  and this depends on the process of decision horizon.. 

Accordingly, the formulations in (4) and (5) with their respective ranges of target may be 

expressed as: 
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Since the leader holds greater decision-making authority, they should allow some flexibility 

in their best decision, represented by b

1X l

,  by relaxing it to a certain extent as a lower 

tolerance limit )XXX(X b

11

w

11

llll  . This relaxation helps create space for the follower to 

explore and find a better decision. 

According to the principle of midpoint arithmetic in IP , the interval objective of the control 

vector 
1

X can be expressed as 

                            ]X,X[X b

111

ll                                                   (8)                                                

4.2. Precise goal modeling for objectives defined by intervals 

For developing the GP process of the study, the objectives listed in (6), (7), and (8) need to 

be converted into basic objective formats. This is achieved by defining target ranges and 

adding variables that represent deviations below and above these targets for each objective. 

The standard way to represent the goals of the objectives can be formulated as 

       ,tdd)X,X(T L

1L1L121L1                                                              

(9) 

and ;tdd)X,X(T U
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(10)  

        ,tdd)X,X(T L
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(11)       
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and  ,tdd)X,X(T U

2U2U221U2               (Follower‘s problem)                      (12) 

where 2,1k,0)d,d(
kUkL

  express the extent of deviation below the desired level, 

and 2,1k,0)d,d(
kUkL

  indicate the over-deviational variables linked with the associated goal 

expressions. 

In the same manner, the objective formulations for the vector of control 1X  are expressed as: 
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correspond to the deviation vectors (under and over), the size of which is dependent on 1
X . 

5. MATHEMATICAL FORMULATION OF THE GP MODEL 

In a process of decision analysis, each decision maker (DM) aims to reach their goal values 

within given target ranges by reducing the regrets, which are measured using deviational 

variables related to the decisions [32]. The function representing goal attainment is known as 

the regret function because it focuses on minimizing these regret intervals as much as 

possible within the decision-making environment. In interval programming, both the 

minsum GP approach [11], which minimizes the total weighted unwanted deviations, and the 

minmax GP approach [1], which minimizes the largest deviation, are combined. This 

combination helps find a balanced and satisfactory solution that meets the target intervals for 

the goals. 

From the hopeful perspective of both DMs,, the focus is on reducing the unavoidable regrets 
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and must comply with the constraints of goals given in (9)–(14), under the system constraint 

described in (3), 

Where Z represents the regret function, which quantifies the extent of goal achievement or 

the shortfall in meeting the goal. 

)),2n(,...,2,1i(d,d,d,d 1iUiLiUiL   for  ),2,1k(d,d,d,d kUkLkUkL   and n1, the parts or elements of 

each of the 
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_
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  represent 

the numerical values that indicate the significance of reaching the goals within their 

corresponding target ranges, and ;10     stands for min operator.  
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It is essential to note that the function Z in equation (15) is non-convex, meaning it does not 

have a single, straightforward shape and may have multiple local minima or maxima, 

making optimization more complex and typical characteristic of combinational optimization 

problems. To solve this, the mixed 0-1 programming approach [10], which is popular and 

relatively simple, is employed here. 

5.1. Transformation of GP Model into Mixed 0–1 Programming Form 

For   }1,0{ iz , (either 0 or 1), 2))(n1,2,....,(k 1  , the regret function Z in (15) can be recast  as 

: 
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Now,  

V)d(d)d(d iUiLiUiL    , i = 1, 2,..,(n1+2)                (18)                       

Next, by including the variable zi introduced earlier, the equivalent equation form as: 
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where   }1,0{ iz  ;  i = 1, 2,..,(n1+2)                                          (19) 

The executable GP model is ultimately represented as follows: 
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in condition of equations (15) and (19)  

Here, the most fit function is: 

eval (VP) = (Z)P ,  P = 1,2,…, pop_size. 

The best chromosome V
*
 with highest fitness score at a generation is found below:  

}.pop_size1,2....,P)min{eval(VV P
*   

A numerical example is solved to demonstrate the proposed method 

Under the constraint sets specified in (15) and (19), the genetic algorithm (GA), which serves 

primarily as a satisficing decision-maker rather than a strict optimizing decision maker, can 

effectively be applied to minimize the regret function Z in (20). This strategy greatly assists 

in achieving a mutually satisfactory decision through the reduction of regrets for both 

decision makers.  

the candidate with the smallest fitness value, expressed as  

eval (VP) = (Z)P ,  P = 1,2,…, pop_size. 

To show case the proposed method, a comprehensive example is presented for illustration. 
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6. ILLUSTRATION THROUGH EXAMPLE 

Suppose the two variables involved in the decision-making process, 1x  and 2x , are 

controlled by the leader and the follower, respectively. 

In that case, the FBLPP with interval coefficients can be expressed as: 

Find X (x1, x2) so as to 

]3,3[x]7,3[x]5,4[

]8,7[x]11,5[x]2,1[
)x,x(FMax

21

21
211

x1 


  ,           (upper hierarchical problem)                   (21) 

           

and,  

   ]6,5[x]4,2[x]7,6[

x]2,1[x]4,3[
)x,x(FMax

21

21
212

x2 


  ,          (lower hierarchical problem)          (22) 

With condition 

  2 x1 + x2  7,     -2x1 + 4x2   9,  

  5x1 + 2x2  6,    x1 ≤2,   

   x1, x2   0 .                                                                    (23)           

 

Based on the procedure, the Leader‘s goal in interval valued form is given as 

 

  
,

3x3x4

8x11x2
,

3x7x5

7x5x

21

21

21

21


















 

For the 2
nd

 decision maker that follows the first is: 

   



















5x2x6

x2x4
,

6x4x7

xx3

21

21

21

21 . 

The solution by using the given scheme by the following the GA parameters proved 

effective during the solution determination: 

Crossover probability Pc = 0.8, mutation probability Pm = 0.08, population size of 100, and 

chromosome length of 30. 

The GA was programmed in the C language and executed on an Intel Pentium IV processor 

running at 2.66 GHz with 1 GB of RAM. 

The first level decision maker‘s highest and lowest solutions are determined as:
          )41.3;3,0()T;X,X( *

U1
b

2
b

1 
ll   

   and )47.0;0,4()T;X,X( *
L1

w
2

w
1 

ll , respectively.  

The follower's optimal and least favorable solutions have been determined. 

These represent the best and worst outcomes for the follower in the decision context. 

              
)65.0;5.4,5.1()T;X,X( *

U2
bf

2
bf

1 

 
      and  )1.0;1,0()T;X,X( *

L2

wf

2

wf

1  , respectively.  
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Then, the goals in the conventional GP formulation can be derived:  

  
]41.3,47.0[

3x3x4

8x11x2
,

3x7x5

7x5x

21

21

21

21 

















,                

  
]65.0,1.0[

5x2x6

x2x4
,

6x4x7

xx3

21

21

21

21 

















 ,                     

Once again, the decision variable x1 with its corresponding target interval is given as 

                                      [1, 1] x1 = [0,1.5]. 

Then, the goals in standard GP formulation are obtained as 

,47.0dd
3x7x5

7x5x
L1L1

21

21 


 

       
,41.3dd

3x3x4

8x11x2
U1U1

21

21 


 
 

,1.0dd
6x4x7

xx3
L2L2

21

21 


 

  
 
    

,65.0dd
5x2x6

x2x4
U2U2

21

21 


 

 

,0ddx L3L31 


                        

5.1ddx U3U31  

                                                            (24) 

By applying the expressions of Z in equation (20) and following the outlined procedure, the 

executable GP model in the form of a mixed integer (0-1) programming problem is 

formulated as follows: 

To find X(x1, x2) such that 

Minimize Z= ,V)1()}z1()dwdw(z)dwdw{( i

3

1i

iUiUiLiLiiUiUiLiL 








 



       (25) 

to satisfy the goal constraints in (24) 

subject to, ,V)z1)(dd(z)dd( iiUiLiiUiL    i=1,2,3 ; }1,0{z i  , and the constraints in (23). 

We assume equal weights w1 = w2 = w3 = 1/3 that are assigned for achieving the goals. 

The problem is then solved using the GA method, with the function Z from (25) serving as 

the fitness function. 

The decision outcome is obtained as: 

).0656.2,0()x,x( 21   

The objective function values achieved, given in interval form, are: 

   ],45.0,14.0[Zand]34.3,99.0[Z 21   

The results indicate a satisfactory decision is achieved by appropriately allocating decision-

making powers between both decision makers. 

It should be noted that if the objectives had crisp coefficients instead of interval ones, the 

problem could be easily solved using the mid-point arithmetic method [14] within the 

proposed framework. 
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Additionally, the proposed GA-based approach avoids the computational difficulties caused 

by fractional objectives [6] and the heavy processing burden associated with traditional 

linearization methods [21]. 

7. CONCLUSION 

The principal establishment of the proposed IP method for addressing the fractional bilevel 

situation lies in its ability to circumvent the ambiguity often introduced by fixed objective 

values in conventional methodologies. Instead, it incorporates goal values defined within 

flexible interval ranges, thereby accommodating the diverse requirements and preferences of 

DMs more effectively. 

This approach enables the attainment of objective values within specified bounds, which can 

dynamically vary depending on the input parameters. These intervals offer adaptability and 

can be fine-tuned to align with the strategic priorities and operational constraints of an 

organization, particularly within hierarchical decision-making frameworks [33, 34].   

Moreover, the proposed method holds potential for scalability and can be extended to tackle 

multi-objective optimization problems in complex, large-scale hierarchical organizations. 

Such extensions present promising avenues for future research. 

In summary, this innovative approach not only enhances the modeling of practical 

hierarchical decision-making problems but also contributes to the development of robust, 

adaptive strategies that support the sustainable advancement of organizations in an 

increasingly competitive and uncertain global environment. 
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